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Abstract

This study evaluates the stress behavior of a cracked ®lm±substrate medium by applying the multi-region boundary

element method. Four problems addressed herein are the crack tip within a ®lm, the crack tip terminating at the in-

terface, interface debonding, and the crack penetrating into the substrate. The multi-region boundary element method is

initially developed and, then, the stress intensity factors or the energy release rates are evaluated according to the

di�erent stress singularities of the four considered problems. These results indicate that the stress intensity factors or the

energy release rates of the four problems rely not only on the di�erent elastic mismatches and crack lengths, but also on

the thickness ratio of the ®lm and the substrate. Ó 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Owing to the high performance demands of engineering devices, coating technology profoundly en-
hances the lifetime of materials. In coating processes, the thermal stress exists due to the di�erence among
the thermal expansion coe�cients of the coating and the substrate. Consequently, the ®lm±substrate
composite medium may incur cracking or debonding. The cracking path or the debonding pattern is related
not only to the residual thermal stress, but also to the relative toughness (Kral et al., 1996) or relative
melting temperature of the ®lm±substrate medium (Suo and Hutchinson, 1989; Thornton, 1989). However,
cracking may originate from the edge of the ®lm and extend along the direction perpendicular to the in-
terfaces (Fig. 1(a)); cracking may stop at the interface (Fig. 1(b)). When the crack tip reaches the interface
of the ®lm±substrate medium, the crack may bifurcate onto the interface (Fig. 1(c)) if the interface has a
decreased strength; the crack may also penetrate into the substrate if the toughness of the substrate is low
(Fig. 1(d)). Although the cracking patterns have received considerable attention, the stress behaviors all of
the crack patterns must be fully realized. Therefore, this study evaluates the stress behaviors of the four
problems illustrated in Fig. 1.

Problems associated with the cracked ®lm±substrate structure have been studied (Cook and Erdogan,
1972; Gecit, 1979; Lu and Erdogan, 1983a,b; Chen, 1984). Cook and Erdogan (1972) analyzed the problem
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of two elastic bonded half planes containing a crack perpendicular to the interface. According to their
results, the power of stress singularity at the crack tip of the interface is not )1/2. Moreover, Gecit (1979)
investigated the plane problem of a cracked elastic surface layer bonded to an elastic half space, indicating
that if the length of the edge crack is short, the stress behavior at the crack tip is proportional to rÿ1=2.
However, if the crack tip is near the interface, the power of stress singularity is 0.8248 for aluminum±epoxy
medium and 0.6205 for steel±aluminum bonded material. Related investigations (Lu and Erdogan, 1983a,b;
Chen, 1984) obtained similar results for the crack normal to and terminating at a bi-material interface, the
stress ®eld is proportional to rÿs, where s denotes the stress singularity exponent and is related to DundursÕ
parameters a and b. However, most analytical results have mainly focused on the power of stress singu-
larities at the crack tips (Cook and Erdogan, 1972; Gecit, 1979; Lu and Erdogan, 1983a,b; Chen, 1984); the
numerical results are limited to a few unique cases. Beuth (1992) presented solutions for problems involving
the crack tip within a ®lm and crack tip on the interface over the full range of practical elastic mismatches,
when applying the ®nite element method.

One of important failure modes for ®lm±substrate systems is that the crack penetrates the full range of
the ®lm and bifurcates onto the interface (Fig. 1(c)). The well-known displacement and stress oscillations
arise around the tips of an interface crack (Willams, 1959; England, 1965; Erdogan, 1988; Rice, 1988). To
evaluate the oscillatory stress intensity factor (SIF) of interface cracks, the auxiliary ®eld is taken as the
singular crack tip ®eld for an interfacial crack (Matos et al., 1989). However, calculating the energy release
rate (ERR) or the overall SIF does not encounter oscillation problems (Ye et al., 1992; Tan and Gao, 1990).

Fig. 1. The geometry of the cracked ®lm±substrate medium: (a) crack tip inside the ®lm; (b) crack tip on the interface; (c) crack along

the interface; and (d) crack tip inside the substrate.
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Ye et al. (1992) provided the approximate formulas of the dimensionless ERR for the interface crack of the
®lm±substrate medium by the ®nite element calculation.

If the toughness of a substrate is su�ciently low, the crack penetrates into the substrate (Fig. 1(d)). While
addressing this problem, Beuth (1992) evaluated the approximate formula of the dimensionless ERR and
Ye et al. (1992) examined the critical ®lm thickness to avert cracking. According to Beuth (1992), the di-
mensionless ERR rapidly decays when the crack tip is near the interface. In addition, the dimensionless
ERR approaches a constant value when the crack tip is somewhat farther from the interface. A related
problem of Fig. 1(d) is a crack kinking out of an interface crack (He and Hutchinson, 1989; Akisanya and
Fleck, 1994). He and Hutchinson (1989) derived the theory of kinking of an interface, that provides the SIF
and ERR of the kinked crack in terms of the corresponding quantities for the interface crack prior to
kinking. Akisanya and Fleck (1994) discussed the role of the T-stresses and the interfacial phase angle in
in¯uencing the selection of crack path.

Most investigations assumed that the thin ®lm is bonded to a dissimilar semi-in®nite substrate material
(Gecit, 1979; Chen, 1984; Beuth, 1992; Ye et al., 1992), whereas the e�ects of the thickness ratio of the ®lm
and substrate have seldom been considered. However, according to Lu and Erdogan (1983a), the SIF of the
problem of Fig. 1(d) is related to the thickness ratio of the ®lm±substrate system. Therefore, although
previous literature o�ers solutions to problems resembling those addressed herein, this study emphasizes
not only the material properties and the crack length, but also the thickness ratio of the ®lm and the
substrate. Moreover, results in this study provide further insight into the stress behavior of the ®lm±sub-
strate composite materials.

This study also addresses the problem of compressive stress acting on the surfaces of the crack in the
®lm±substrate body of a ®nite dimension. The SIF or ERR is examined at the crack tip while considering
di�erent crack lengths, di�erent material combinations, and di�erent thickness ratios of the ®lm and the
substrate. As generally known, analytical solutions can be obtained only for simple geometry or in®nite
body. In addition, the boundary element method (BEM) aptly resolves the problem involving stress
concentration. Therefore, this study also develops the multi-region boundary element method and applies
it to evaluate the cracked ®lm±substrate medium. Also adopted herein is the numerical solution of the ®nite
element method of Beuth (1992) and Ye et al. (1992), which is used to compare with the solution in
this study. In all the cases found in Fig. 1, the SIF or the ERR obtained from the current multi-region
BEM correlates well with those studied in Beuth (1992) and Ye et al. (1992) for the nearly in®nite
substrate.

2. Multi-region boundary element method

2.1. Boundary element method

For homogeneous and isotropic elastic bodies, the boundary integral equation neglecting the body force
is written in the following form (Becker, 1992):

Cij�P �ui�P � �
Z

s
ti�Q�Uij�P ;Q�d�S�Q ÿ

Z
s

ui�Q�Tij�P ;Q�d�S�Q; �1�

where the kernel functions Uij and Tij denote the fundamental displacement and traction, respectively, and
ui and ti represent the displacement and traction vectors on the boundary S. The value of the coe�cient
Cij�P � depending on the boundary conditions can be estimated by applying the technique of rigid body
translation.

The boundary S can be discretized into many elements for numerical calculation. When the isopara-
metric quadratic elements in local coordinates of 06 n6 1 are used, Eq. (1) can be rewritten as
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Cij�P�ui�P � �
Xne

e�1

t�1�i

Z
�oX�e

N1Uij d�oX�e
"

� t�2�i

Z
�oX�e

N2Uij d�oX�e � t�3�i

Z
�oX�e

N3Uij d�oX�e ÿ u�1�i

�
Z
�oX�e

N1Tij d�oX�e ÿ u�2�i

Z
�oX�e

N2Tij d�oX�e ÿ u�3�i

Z
�oX�e

N3Tij d�oX�e
#
; �2�

where Ni are the shape functions, which are N1 � n�nÿ 1�=2, N2 � �1ÿ n��1� n�, and N3 � n�n� 1�=2; the
quantity ÔneÕ represents the total element numbers on the boundary S; u�k�i and t�k�i denote the displacement
and traction vectors of the kth node in the element ÔeÕ. By inserting the source point P in each node and
performing the integration of Eq. (2), Ô2nÕ simultaneous equations can be obtained, where ÔnÕ is the total
nodes on the discreted boundary S. These are

H� �2n�2n uf g2n�1 � G� �
2n�2n

tf g2n�1; �3�

where H� � and G� � denote the square matrices containing traction and displacement kernel functions, re-
spectively. In addition, vectors uf g and tf g represent the collection of nodal displacements and nodal
tractions.

2.2. Multi-region boundary element method

Fig. 2 depicts a homogeneous elastic isotropic body containing three kinds of materials. The boundary
of material 1 is S1 [ S4, and the boundary of material 2 is S2 [ S4 [ S5. Correspondingly, the boundary of
material 3 is S3 [ S5.

For the material 1, the systematic equations of BEM are

H� ��1�11 H� ��1�12

H� ��1�21 H� ��1�22

" #
uf g�1�1

uf g�1�4

( )
� G� ��1�11 G� ��1�12

G� ��1�21 G� ��1�22

" #
tf g�1�1

tf g�1�4

( )
; �4�

where superscript Ô(1)Õ denotes material 1. Subscripts Ô1Õ in uf g�1�1 and tf g�1�1 represent the nodal displace-
ments and nodal tractions on boundary S1 and subscript Ô4Õ is for boundary S4. Moreover, the notations
H� ��1�ij and G� ��1�ij denote the submatrices of matrices �H � and �G�, respectively.

Similarly, the systematic equations of BEM for materials 2 and 3 can be written as

Fig. 2. The boundaries of a three-region BEM.
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H� ��2�11 H� ��2�12 H� ��2�13

H� ��2�21 H� ��2�22 H� ��2�23

H� ��2�31 H� ��2�32 H� ��2�33

264
375 uf g�2�4

uf g�2�2

uf g�2�5

8><>:
9>=>; �

G� ��2�11 G� ��2�12 G� ��2�13

G� ��2�21 G� ��2�22 G� ��2�23

G� ��2�31 G� ��2�32 G� ��2�33

264
375 tf g�2�4

tf g�2�2

tf g�2�5

8><>:
9>=>;; �5�

H� ��3�11 H� ��3�12

H� ��3�21 H� ��3�22

" #
uf g�3�5

uf g�3�3

( )
� G� ��3�11 G� ��3�12

G� ��3�21 G� ��3�22

" #
tf g�3�5

tf g�3�3

( )
: �6�

Combining Eqs. (4)±(6) allows us to obtain the systematic equations for a three-material composite.
The continuity conditions on the boundary S4, which are uf g�1�4 � uf g�2�4 and tf g�1�4 � ÿ tf g�2�4 , and on the

boundary S5, which are uf g�2�5 � uf g�3�5 and tf g�2�5 � ÿ tf g�3�5 must be satis®ed. In addition, the boundary
tractions on the boundaries S1, S2, and S3 prescribed in general and denoted as TT1, TT2, and TT3,
respectively, must also be satis®ed. Consequently, the continuity conditions as well as the prescribed
tractions are substituted into the systematic equations and the unknown quantities on the right hand side of
the systematic equations are switched with the known quantities on the left hand side of the systematic
equations. In doing so, the systematic equations of the three-region BEM can be expressed in the form as
follows:

A� � Xf g � Bf g; �7�
where

A� � �

H� ��1�11 H� ��1�12 ÿ G� ��1�12 0 0 0 0

H� ��1�21 H� ��1�22 ÿ G� ��1�22 0 0 0 0

0 H� ��2�11 G� ��2�11 H� ��2�12 H� ��2�13 ÿ G� ��2�13 0

0 H� ��2�21 G� ��2�21 H� ��2�22 H� ��2�23 ÿ G� ��2�23 0

0 H� ��2�31 G� ��2�31 H� ��2�32 H� ��2�33 ÿ G� ��2�33 0

0 0 0 0 H� ��3�11 G� ��3�11 H� ��3�12

0 0 0 0 H� ��3�21 G� ��3�21 H� ��3�22

266666666664

377777777775
;

Bf g �

G� ��1�11 0 0 0 0 0 0

G� ��1�21 0 0 0 0 0 0

0 0 0 G� ��2�12 0 0 0

0 0 0 G� ��2�22 0 0 0

0 0 0 G� ��2�32 0 0 0

0 0 0 0 0 0 G� ��3�12

0 0 0 0 0 0 G� ��3�22

266666666664

377777777775

TT1
0
0

TT2
0
0

TT3

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
:

Eq. (7) can be solved by the method of Gaussian elimination without any di�culty.

3. Stress intensity factor

According to the literature reviewed, the stress behaviors near the crack tips for the four problems in Fig.
1 are not quite the same. Consequently, these four problems in Fig. 1 di�er in terms of how to evaluate the
SIF or ERR. The following section discusses the formulas of SIF calculation for these associated problems
on the basis of the linear elastic fracture mechanics.
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3.1. Crack tip located inside the ®lm or inside the substrate

If the crack tip is located within the ®lm or within the substrate (Fig. 1(a) and (d)), the stress has the
square root singularity, and hence, the mode-I SIF for the plane strain problem can be evaluated by the
form

KI � E
4�1ÿ m2� lim

y!0�

������
2p
y

s
uxx�0; y�

" #
: �8�

A more accurate SIF can be obtained by using the quarter-point element. Therefore, Eq. (8) is rewritten as

KI � E
4�1ÿ m2�

������
2p
l

r
�4u�D�xx

"
ÿ u�E�xx �

#
; �9�

where, quantity l denotes the length of the quarter-point element and superscripts Ô(D)Õ and Ô(E)Õ represent
the nodes ÔDÕ and ÔEÕ, as shown in Fig. 3.

3.2. Crack tip terminating at the interface

According to Cook and Erdogan (1972), if the crack tip terminates at the interface (Fig. 1(b)), the stress
just ahead the crack tip is

rxx�0; y� � b
r�hf�s
�ÿy�s ; �10�

where hf denotes the thickness of the ®lm, b represents dimensionless constant, and s is the stress singularity
exponent, which satis®es

cos sp� � ÿ 2
aÿ b
1ÿ b

1� ÿ s�2 � aÿ b2

1ÿ b2
� 0; �11�

where a and b are called DundursÕ constants, which are

a �
�E1 ÿ �E2

�E1 � �E2

; b � l1 1ÿ 2m2� � ÿ l2 1ÿ 2m1� �
2l1 1ÿ m2� � � 2l2 1ÿ m1� �

for the plane strain problem. In the above equation, �Ei � Ei=�1ÿ m2
i �; i � 1; and 2 is called material plane

strain modulus. The quantities li; i � 1; and 2 represent the shear moduli of material i. Because the power
of stress singularity at the crack tip is no longer one-half, the SIF for mode-I crack is de®ned by

KI � lim
y!0ÿ
�� ÿ 2py�srxx�0; y��: �12�

Fig. 3. The quarter-point element near the crack tip.
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3.3. Interface crack

Consider a situation in which the crack propagates through the full ®lm and then bifurcates onto the
interface of the ®lm and substrate, as shown in Fig. 1(c). The stress and displacement behaviors are the
same as those of the interface crack. Hutchinson et al. (1987) observed the asymptotic displacement ®eld
near the crack tips of an interface crack. It can be expressed as

�uy � iux�p ÿ �uy � iux�ÿp �
�c1 � c2�Kr�1=2��ie

�1� 2ie�2 ������
2p
p

cosh�pe� ; �13�

where the constants c1 � �j1 � 1�=l1 and c2 � �j2 � 1�=l2; K denotes the complex intensity factor ex-
pressed by K1 � iK2 introduced by Sih and Rice (1964); the quantity e representing the material character is
in the form of

e � 1

2p
ln

j1=l1 � 1=l2

j2=l2 � 1=l1

� �
: �14�

In Eq. (14), subscripts 1 and 2 refer to the materials in y > 0 and y < 0, respectively; the quantity j � 3ÿ 4m
for plane strain and �3ÿ 4m�=�1� m� for plane stress.

Taking the real and imaginary parts on both sides of Eq. (13) allows us to set up two simultaneous
equations. Then, by solving the simultaneous equations, the real and imaginary parts of the complex-valued
SIF, K1 and K2, are as follows:

K1 � D1

Q
��
r
p u�y
�
ÿ uÿy

�
ÿ D2

Q
��
r
p u�x
ÿ ÿ uÿx

�
;

K2 � D1

Q
��
r
p u�x
ÿ ÿ uÿx

�� D2

Q
��
r
p u�y
�
ÿ uÿy

�
;

�15�

where Q � �c1 � c2�=2
������
2p
p

cosh�pe�, D1 � cos�e ln r� � 2e sin�e ln r�, D2 � cos�e ln r� ÿ 2e sin�e ln r�,
u�y � uy�p�, uÿy � uy�ÿp�, u�x � ux�p�, and uÿx � ux�ÿp�. The terms of cos�e ln r� and sin�e ln r� appearing in
Eq. (15), cause a di�culty in numerical calculation when r approaches zero. Therefore, the overall SIF (Tan
and Gao, 1990), K0, representing the maximum amplitudes of these singular stresses, or representing the
magnitude of the complex SIF is de®ned as

K0 � jKj �
�����������������
K2

1 � K2
2

q
: �16�

Substituting Eq. (15) into Eq. (16) yields the following expression for the overall SIF:

K0 �
���������������
1� 4e2
p

Q
��
r
p �u�x

h
ÿ uÿx �2 � �u�y ÿ uÿy �2

i1=2

: �17�

Eq. (17) indicates that the overall SIF K0 has square root singularity at the tips of the interface crack.
To calculate the square root singularity, the quarter-point element is applied. According to Blandford

(1981), displacements at any point inside the quarter-point element with a distance r from the crack tip can
be written as

ui�r� � A�1�i � A�2�i

��
r
l

r
� A�3�i

r
l

� �
; �18�

where l denotes the length of the quarter-point element; A�1�i � u�1�i , A�2�i � �ÿ3u�1�i � 4u�2�i ÿ u�3�i �,
A�3�i � �2u�1�i ÿ 4u�2�i � 2u�3�i � and u�k�i is the displacement vector of the kth node of the quarter-point element.
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Substituting Eq. (18) into Eq. (17) yields the expression of the overall SIF in terms of the nodal dis-
placements of the quarter-point elements. Restated,

K0 �
���������������
1� 4e2
p

Q
��
l
p 4�u�D�x

h�
ÿ u�F �x � � �u�G�x ÿ u�E�x �

i2

� 4�u�D�y

h
ÿ u�F �y � � �u�G�y ÿ u�E�y �

i2
�1=2

; �19�

where superscripts (D), (E), (F), and (G) denote the nodal numbers of the quarter-point elements on the
surface of the interface crack, as shown in Fig. 3.

4. Numerical evaluation

For the cracked ®lm±substrate system, the material properties of the ®lm and substrate are both assumed
to be linear isotropic and homogeneous. Let YoungÕs modulus and Poisson ratio be denoted as E1; m1 for
the ®lm and E2; m2 for the substrate. Also assumed herein, the cracked ®lm±substrate structure is subjected
to a uniform load in the x -direction on the crack surface. Owing to the symmetry with respect to y -axis,
only the half space x P 0 is considered.

4.1. Crack tip in the ®lm

First, consider a crack starting from the edge of the ®lm and extending along the direction perpendicular
to the interface as shown in Fig. 1(a). The SIF can be evaluated by Eq. (9).

4.1.1. E�ects of Dundurs' parameters and crack length on the SIF
To understand how the crack length and DundursÕ parameters in¯uence the SIF, the value of the di-

mensionless crack length af=hf is taken from zero to one and DundursÕ parameters are chosen as b � 0 and
a � 0:99; 0:8; 0; and ÿ 0:8. Fig. 4 summarizes those results, which correlate very well with those of Beuth
(1992) and reveals the following: (i) If the ®lm is sti�er than the substrate (i.e., a > 0), the SIF increases with
an increasing crack length. More speci®cally, as the crack tip is near the interface (af=hf ! 1), SIF rapidly

Fig. 4. The e�ects of the crack length and DundursÕ parameters on SIF of the problem in Fig. 1(a).
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increases, which is quite obvious for the case a � 0:99; (ii) when the ®lm and substrate have the same elastic
properties (i.e., a� 0), the normalized SIF KI=r

�������
phf

p � 1 for af=hf ! 1. This phenomenon is attributed to
the crack embedded in one material; (iii) For a < 0 (the substrate is sti�er than the ®lm), the value of
KI=r

�������
phf

p
is about 0.8 for af=hf � 0:2 � 0:9, whereas KI=r

�������
phf

p
decreases as the crack tip is nearly ter-

minated at the interface (i.e., af=hf ! 1). This observation suggests that if the substrate is sti�er than the
®lm, it is not easy for the cracking to further propagate into the substrate.

4.1.2. E�ects of the thickness ratio of the substrate and ®lm on the SIF
Fig. 5 is plotted according to the thickness ratios of the substrate and the ®lm (hs=hf ) equal to 1, 3, and 10

and the material properties of the ®lm and substrate taken as l1 � 3l2, m1 � m2 � 0:3. This ®gure indicates
that the thicker the substrate implies a lower amount of SIF. However, the SIF varies only slightly when the
ratio hs=hf increases from 3 to 10. This ®nding suggests that if the ratio hs=hf is more than 10, the value of
SIF is nearly the same as that of hs=hf � 10.

4.2. Crack tip terminating at the interface

Interestingly, the crack tip is located on the interface of the ®lm and the substrate, as illustrated in Fig.
1(b). As for this problem, the stress behavior at the crack tip has been mentioned in Section 3.2. The SIF
can be evaluated by Eq. (12).

4.2.1. E�ects of Dundurs' parameters a and b on the SIF
To understand the e�ects of DundursÕ parameters on SIF, take b � 0 and b � a=4, while a is changed

form )1 to 1. Fig. 6 plots the relation of the dimensionless SIF, KI=r�phf�s, and DundursÕ parameter a. This
®gure reveals the following: (i) the value of KI=r�phf�s decreases with an increase of the parameter a from
)1 to 1 for b � 0 as well as b � a=4. This occurrence is attributed to that when a increases, r does as well,
subsequently, decreasing the dimensionless SIF; (ii) For a < 0, the value of KI=r�phf�s for b � a=4 is less
than that for b � 0; while for a > 0, the value of KI=r�phf�s for b � a=4 is larger than that for b � 0.

Fig. 5. The e�ect of the thickness ratio on SIF of the problem in Fig. 1(a).
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The results in Fig. 6 slightly di�er from those of Beuth (1992). However, when a � b � 0, in the absence
of elastic mismatch, the value of KI=r�phf�s should be equal to 1. According to our results, the value of
KI=r�phf�s for a � b � 0 is 0.95, in which the error is 5%; but in BeuthÕs result, the value of KI=r�phf�s is
1.11, in which the error is 11%.

4.2.2. E�ects of the thickness ratio hs=hf on the SIF
Consider the thickness ratios (hs=hf ), which are chosen as 1, 2, 3, 4, 6, and 20. Figs. 7 and 8 summarize

the results for b � 0 and b � a=4, respectively. According to these ®gures, KI=r�phf�s decreases with in-
creasing hs=hf . In addition, the di�erence of KI=r�phf�s between hs=hf � 1 and hs=hf � 2 is signi®cantly
higher than that of KI=r�phf�s between di�erent thickness ratios. Moreover, if the thickness ratio hs=hf � 1,
the dimensionless SIF, KI=r�phf�s, has a maximum value at a � ÿ0:6 for b � 0 and at a � ÿ0:8 for
b � a=4.

4.3. Interface crack

When the crack penetrates the ®lm and then propagates along the interface of the ®lm and substrate, as
shown in Fig. 1(c), the stress behavior near the crack tip of this problem is the same as that of the interface
crack. For the plane strain problem, the ERR for the interface crack problem of Fig. 1(c) denoted as Gi can
be calculated by the equation as follows (Suga et al., 1988):

Gi � 1ÿ m1

l1

�
� 1ÿ m2

l2

�
K �K

4 cosh2�pe� ; �20�

where K denotes the complex-valued SIF and �K represents the conjugate of K. The quantity �K �K�1=2
is the

overall SIF, K0, named by Tan and Gao (1990) and can be evaluated using Eq. (19). Therefore, as long as
the overall SIF K0 is obtained, the ERR Gi of the interface crack can calculated by Eq. (20).

Fig. 6. DundursÕ parameters a versus SIF of the problem in Fig. 1(b) for b � 0 and b � a=4.
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4.3.1. E�ects of Dundurs' parameters and the crack length on G
For this interface crack problem, examining the variations of the normalized ERR for various combi-

nations of DundursÕ parameters is a worthwhile task. The following data are used: b � a=4, a � 0:6, 0.2, 0,
)0.6, and )0.9; the thickness ratio hs=hf is ®xed to 20; the ratio of crack length and the ®lm thickness
ai=hf � 0� � 3:0. Fig. 9 depicts the variations of normalized ERR, Gi

�Ef=�r2hf�, versus ai=hf according to
di�erent parameter a, where �Ef � E1=�1ÿ m2

1�. It can be seen from Fig. 9 that when the dimensionless crack
length ai=hf < 1, the ERR decreases as a > 0; meanwhile, the ERR slowly increases as a < 0. Moreover,
when ai=hf > 1, the ERR with the thickness ratio hs=hf � 20 approaches a constant value for all a. This
®nding implies that the ERR is in steady state if the crack tip is of a distance of hf apart from where the load
is applied and if the thickness ratio is su�ciently high. Notably, results in this ®gure slightly di�er from

Fig. 8. The e�ect of the thickness ratio on SIF of the problem in Fig. 1(b) for b � a=4.

Fig. 7. The e�ect of the thickness ratio on SIF of the problem in Fig. 1(b) for b � 0.
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those of Ye et al. (1992). The discrepancies might be because of the inherent inaccuracies induced by the
discreteness of the BEM. It is also quite possible that the SIF calculation technique for interface cracks
shown in Eq. (19) gives di�erent results from those calculated by the ®nite element method based on the
J-integral.

4.3.2. E�ects of the thickness ratio hs=hf

The data in Fig. 9 are based on hs=hf � 20. This section addresses the e�ect of the substrate thickness on
the ERR. For a � 0:2 and b � a=4, Fig. 10 shows the graph of the ERR versus the dimensionless crack
length with the variations of hs=hf � 1, 2, 3, 5, 10, and 20. According to this ®gure, the thicker the substrate
the lower is the ERR value. This ®gure also reveals that if the substrate thickness is not su�ciently high, e.g.
hs=hf � 1, the ERR has unstable behavior. To investigate this unstable behavior of ERR, let the thickness
ratio hs=hf be ®xed as 1 and DundursÕ parameter a be taken as 0.8, 0.6, 0.2, 0.0, )0.2, )0.6, and )0.8. Fig. 11
summarizes the e�ects of a on ERR of the interface problem for hs=hf � 1. According to this ®gure, al-
though the unstable behavior of the ERR in the problem Fig. 1(c) increases with increasing a, the ERR is
stable for a negative a.

4.4. Crack tip located inside the substrate

In this section, we consider the crack propagating into the substrate, as shown in Fig. 1(d). To analyze
the problem, the quarter-point element is initially used to calculate the SIF of mode-I crack by using Eq. (9).
Then, the ERR Gs of the plane strain problem can be evaluated by

Gs � 1ÿ m2
2

E2

K2
I : �21�

Subscript ÔsÕ in Gs indicates the ERR for the problem in which the crack tip is located inside the sub-
strate.

Fig. 9. The e�ects of the crack length and the parameter a on ERR of the problem in Fig. 1(c) for b � a=4.
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4.4.1. E�ects of crack length and Dundurs' parameters
To study the e�ects of the crack length and DundursÕ parameters, the dimensionless crack length as=hf is

taken from 1� to 3.6 and the parameters a� 0.5, 0.3, 0, )0.3, and )0.5, b � a=4 are chosen. The thickness
ratio with the thickness ratio hs=hf is ®xed to 20. Fig. 12 illustrates the variation of the dimensionless ERR,
Gs

�Ef=�r2hf�, with dimensionless crack length as=hf . According to this ®gure, the value of Gs increases with
increasing a. Moreover, ERR Gs rapidly decreases when the crack tip is near the interface; it also slowly
decreases when the crack experiences further growth. However, our results are slightly greater than those of
Ye et al. (1992), specially when as=hf > 3, the discrepancies are increase. This di�erence might be attributed

Fig. 10. The e�ect of the thickness ratio on ERR of the problem in Fig. 1(c) for a � 0:2 and b � a=4.

Fig. 11. The e�ect of the parameter a on ERR of the problem in Fig. 1(c) for hs=hf � 1.
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to the e�ect of the boundary of the substrate on ERR, or the di�erent SIF calculation techniques of in-
terface cracks, as stated in Section 4.3.1.

4.4.2. E�ects of the thickness of the substrate
The same problem in Fig. 1(d) is considered herein. However, the thickness ratios (hs=hf ) equal to 4, 6,

10, and 20 (for ®xed hf ) are used. DundursÕ parameters are taken as a � 0:5 and b � a=4. Fig. 13 indicates
that if the substrate thickness is su�ciently high, e.g. hs=hf � 20, ERR is nearly constant for the dimen-
sionless crack length as=hf equal to 1.5 � 4.6. However, when the substrate thickness decreases, i.e., the
value of hs=hf decreases, and the e�ects of the boundary of the substrate become obvious. The phenomena
associated with the boundary e�ects can be clearly observed when hs=hf � 4.

Fig. 13. The e�ect of the thickness ratio on ERR of the problem in Fig. 1(d) for a � 0:5.

Fig. 12. The e�ect of the crack length on ERR of the problem in Fig. 1(d) for hs=hf � 20.
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5. Conclusions

This study applies the multi-region BEM to analyze the cracked ®lm±substrate material. Based on the
results presented herein, we can conclude the following:

(1) The e�ects of material mismatch: If the ®lm is sti�er than the substrate (a > 0), the SIF or ERR
increases with increasing a; while if the ®lm is weaker than the substrate (a < 0), the SIF or the ERR does
not markedly change. Moreover, for the problem of Fig. 1(a), when the crack tip approaches the interface
(af=hf ! 1ÿ), the SIF or ERR tends to in®nity for a > 0 but approaches zero for a < 0. This observation
suggests that the sti�er substrate can protect the crack propagating further, as con®rmed by Beuth (1992)
and Ye et al. (1992). However, for the problem of the crack tip inside the substrate (Fig. 1(d)), the ERR
increases rapidly for all a when the crack tip approaches the interface (as=hf ! 1�);

(2) The e�ects of the crack length: When the crack starts from the edge of the ®lm and propagates
normally towards the interface, the SIF increases stably for af=hf � 0:2 � 0:5. However, SIF rapidly in-
creases for a > 0 or decreases for a > 0, when the crack is normal and terminated to the interface, as
mentioned by Ye et al. (1992). If the crack further extends along the interface, the ERR decreases (for
a > 0) or increases (for a < 0) to a steady-state value. Charalambides et al. (1989) mentioned that the ERR
of the interface crack is in steady-state condition if the interface crack length signi®cantly exceeds the ®lm
thickness. However, this steady-state behavior is true not only for interface crack length signi®cantly ex-
ceeding the ®lm thickness, but also in the condition of a high thickness ratio hs=hf ; and

(3) The e�ects of the thickness ratio: While the ®lm thickness is ®xed and the substrate thickness is
changed, the SIF or ERR increases with a decreasing hs=hf . Moreover, for the problems of Fig. 1(a) and (b),
the variation of the thickness ratio, hs=hf , only negligibly in¯uences SIF. However, for the problem Fig.
1(c), if the thickness ratio is small (e.g. hs=hf � 1), the interface crack becomes quite unstable for a high
value of a. In addition, when the crack propagates into the substrate (Fig. 1(d)), the boundary of the
substrate greatly in¯uences the ERR.
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