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Abstract

This study evaluates the stress behavior of a cracked film—substrate medium by applying the multi-region boundary
element method. Four problems addressed herein are the crack tip within a film, the crack tip terminating at the in-
terface, interface debonding, and the crack penetrating into the substrate. The multi-region boundary element method is
initially developed and, then, the stress intensity factors or the energy release rates are evaluated according to the
different stress singularities of the four considered problems. These results indicate that the stress intensity factors or the
energy release rates of the four problems rely not only on the different elastic mismatches and crack lengths, but also on
the thickness ratio of the film and the substrate. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Owing to the high performance demands of engineering devices, coating technology profoundly en-
hances the lifetime of materials. In coating processes, the thermal stress exists due to the difference among
the thermal expansion coefficients of the coating and the substrate. Consequently, the film—substrate
composite medium may incur cracking or debonding. The cracking path or the debonding pattern is related
not only to the residual thermal stress, but also to the relative toughness (Kral et al., 1996) or relative
melting temperature of the film—substrate medium (Suo and Hutchinson, 1989; Thornton, 1989). However,
cracking may originate from the edge of the film and extend along the direction perpendicular to the in-
terfaces (Fig. 1(a)); cracking may stop at the interface (Fig. 1(b)). When the crack tip reaches the interface
of the film-substrate medium, the crack may bifurcate onto the interface (Fig. 1(c)) if the interface has a
decreased strength; the crack may also penetrate into the substrate if the toughness of the substrate is low
(Fig. 1(d)). Although the cracking patterns have received considerable attention, the stress behaviors all of
the crack patterns must be fully realized. Therefore, this study evaluates the stress behaviors of the four
problems illustrated in Fig. 1.

Problems associated with the cracked film—substrate structure have been studied (Cook and Erdogan,
1972; Gecit, 1979; Lu and Erdogan, 1983a,b; Chen, 1984). Cook and Erdogan (1972) analyzed the problem
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Fig. 1. The geometry of the cracked film—substrate medium: (a) crack tip inside the film; (b) crack tip on the interface; (c) crack along
the interface; and (d) crack tip inside the substrate.

of two elastic bonded half planes containing a crack perpendicular to the interface. According to their
results, the power of stress singularity at the crack tip of the interface is not —1/2. Moreover, Gecit (1979)
investigated the plane problem of a cracked elastic surface layer bonded to an elastic half space, indicating
that if the length of the edge crack is short, the stress behavior at the crack tip is proportional to /2.
However, if the crack tip is near the interface, the power of stress singularity is 0.8248 for aluminum-epoxy
medium and 0.6205 for steel-aluminum bonded material. Related investigations (Lu and Erdogan, 1983a,b;
Chen, 1984) obtained similar results for the crack normal to and terminating at a bi-material interface, the
stress field is proportional to %, where s denotes the stress singularity exponent and is related to Dundurs’
parameters o and . However, most analytical results have mainly focused on the power of stress singu-
larities at the crack tips (Cook and Erdogan, 1972; Gecit, 1979; Lu and Erdogan, 1983a,b; Chen, 1984); the
numerical results are limited to a few unique cases. Beuth (1992) presented solutions for problems involving
the crack tip within a film and crack tip on the interface over the full range of practical elastic mismatches,
when applying the finite element method.

One of important failure modes for film—substrate systems is that the crack penetrates the full range of
the film and bifurcates onto the interface (Fig. 1(c)). The well-known displacement and stress oscillations
arise around the tips of an interface crack (Willams, 1959; England, 1965; Erdogan, 1988; Rice, 1988). To
evaluate the oscillatory stress intensity factor (SIF) of interface cracks, the auxiliary field is taken as the
singular crack tip field for an interfacial crack (Matos et al., 1989). However, calculating the energy release
rate (ERR) or the overall SIF does not encounter oscillation problems (Ye et al., 1992; Tan and Gao, 1990).
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Ye et al. (1992) provided the approximate formulas of the dimensionless ERR for the interface crack of the
film—substrate medium by the finite element calculation.

If the toughness of a substrate is sufficiently low, the crack penetrates into the substrate (Fig. 1(d)). While
addressing this problem, Beuth (1992) evaluated the approximate formula of the dimensionless ERR and
Ye et al. (1992) examined the critical film thickness to avert cracking. According to Beuth (1992), the di-
mensionless ERR rapidly decays when the crack tip is near the interface. In addition, the dimensionless
ERR approaches a constant value when the crack tip is somewhat farther from the interface. A related
problem of Fig. 1(d) is a crack kinking out of an interface crack (He and Hutchinson, 1989; Akisanya and
Fleck, 1994). He and Hutchinson (1989) derived the theory of kinking of an interface, that provides the SIF
and ERR of the kinked crack in terms of the corresponding quantities for the interface crack prior to
kinking. Akisanya and Fleck (1994) discussed the role of the T-stresses and the interfacial phase angle in
influencing the selection of crack path.

Most investigations assumed that the thin film is bonded to a dissimilar semi-infinite substrate material
(Gecit, 1979; Chen, 1984; Beuth, 1992; Ye et al., 1992), whereas the effects of the thickness ratio of the film
and substrate have seldom been considered. However, according to Lu and Erdogan (1983a), the SIF of the
problem of Fig. 1(d) is related to the thickness ratio of the film—substrate system. Therefore, although
previous literature offers solutions to problems resembling those addressed herein, this study emphasizes
not only the material properties and the crack length, but also the thickness ratio of the film and the
substrate. Moreover, results in this study provide further insight into the stress behavior of the film—sub-
strate composite materials.

This study also addresses the problem of compressive stress acting on the surfaces of the crack in the
film—substrate body of a finite dimension. The SIF or ERR is examined at the crack tip while considering
different crack lengths, different material combinations, and different thickness ratios of the film and the
substrate. As generally known, analytical solutions can be obtained only for simple geometry or infinite
body. In addition, the boundary element method (BEM) aptly resolves the problem involving stress
concentration. Therefore, this study also develops the multi-region boundary element method and applies
it to evaluate the cracked film—substrate medium. Also adopted herein is the numerical solution of the finite
element method of Beuth (1992) and Ye et al. (1992), which is used to compare with the solution in
this study. In all the cases found in Fig. 1, the SIF or the ERR obtained from the current multi-region
BEM correlates well with those studied in Beuth (1992) and Ye et al. (1992) for the nearly infinite
substrate.

2. Multi-region boundary element method
2.1. Boundary element method

For homogeneous and isotropic elastic bodies, the boundary integral equation neglecting the body force
is written in the following form (Becker, 1992):

CyP(P) = [ 1QUNP.0A(S), ~ [ w(OT(P,Q)d(S),, 1)
where the kernel functions U;; and T;; denote the fundamental displacement and traction, respectively, and
u; and ¢; represent the displacement and traction vectors on the boundary S. The value of the coefficient
C;;(P) depending on the boundary conditions can be estimated by applying the technique of rigid body
translation.

The boundary S can be discretized into many elements for numerical calculation. When the isopara-
metric quadratic elements in local coordinates of 0 < ¢ < 1 are used, Eq. (1) can be rewritten as
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where N; are the shape functions, which are Ny = E(¢—1)/2, N, = (1 — 52(1 +&),and N; = £(E+1)/2; the
Sy e ., (k) (k) ;

quantity ‘ne’ represents the total element numbers on the boundary S; »;’and ¢~ denote the displacement

and traction vectors of the kth node in the element ‘¢’. By inserting the source point P in each node and

performing the integration of Eq. (2), 2n’ simultaneous equations can be obtained, where ‘»’ is the total

nodes on the discreted boundary S. These are

[H]2n><2n{u}2n><] = [G]z,,xzn{t}ZnXN (3)

where [H] and [G] denote the square matrices containing traction and displacement kernel functions, re-
spectively. In addition, vectors {u} and {z} represent the collection of nodal displacements and nodal
tractions.

2.2. Multi-region boundary element method

Fig. 2 depicts a homogeneous elastic isotropic body containing three kinds of materials. The boundary
of material 1 is S} U Sy, and the boundary of material 2 is S, U Sy U Ss. Correspondingly, the boundary of
material 3 is S3 U Ss.

For the material 1, the systematic equations of BEM are

1 1 1 1
[H](111> [H](ll2) {u}gl) _ {f}gl) ’ (4)

[H)y) [H) ]| {u)s {1}
where superscript ‘(1)” denotes material 1. Subscripts ‘1’ in {u}gl) and {t}(ll) represent the nodal displace-
ments and nodal tractions on boundary S; and subscript ‘4’ is for boundary S;. Moreover, the notations

[H]l(,jl) and [G]l(j” denote the submatrices of matrices [H| and [G], respectively.
Similarly, the systematic equations of BEM for materials 2 and 3 can be written as
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Fig. 2. The boundaries of a three-region BEM.
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Combining Egs. (4)-(6) allows us to obtain the systematic equations for a three-material composite.
The continuity conditions on the boundary Sy, which are iu}il) = {u}Pand {1}\" = — {}'?, and on the
boundary Ss, which are {u}gz) = {u}?) and {t}(s2> =- {t}53) must be satisfied. In addition, the boundary

tractions on the boundaries S), S,, and S; prescribed in general and denoted as TT1, TT2, and TT3,
respectively, must also be satisfied. Consequently, the continuity conditions as well as the prescribed
tractions are substituted into the systematic equations and the unknown quantities on the right hand side of
the systematic equations are switched with the known quantities on the left hand side of the systematic
equations. In doing so, the systematic equations of the three-region BEM can be expressed in the form as
follows:

[4{X} = {B}, (7)
where
[y Hy -6 o0 000 ]
H)y [H]y -Gy 0 0 0 0
o [HY (o [H [HY -6 0
Al=| o Hy Ol [H HE -6y 0
0 [HE OF HE [Hy -6k o
0 0 0 0 [Hy [y ]y
L 0 0 0 o [HY (G [HE ]
'[G}ﬁ? 00 0 00 0 ]/
Gy 00 0 00 0 0
0 00 [G2 00 o0 0
{(Bt=] 0 00 [G2 00 0 TT2
0 00 [GY 00 0 0
o 00 0 00 [GY T("I"3
L0 00 0 0 0 [@Y]

Eq. (7) can be solved by the method of Gaussian elimination without any difficulty.

3. Stress intensity factor

According to the literature reviewed, the stress behaviors near the crack tips for the four problems in Fig.
1 are not quite the same. Consequently, these four problems in Fig. 1 differ in terms of how to evaluate the
SIF or ERR. The following section discusses the formulas of SIF calculation for these associated problems
on the basis of the linear elastic fracture mechanics.
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3.1. Crack tip located inside the film or inside the substrate

If the crack tip is located within the film or within the substrate (Fig. 1(a) and (d)), the stress has the
square root singularity, and hence, the mode-I SIF for the plane strain problem can be evaluated by the

form
E . 21
K, = my{% [ 7 uxx(Q)’)] . (8)

A more accurate SIF can be obtained by using the quarter-point element. Therefore, Eq. (8) is rewritten as

E

2n

Ki = = (@l - u,i?)] 7 o)

where, quantity / denotes the length of the quarter-point element and superscripts (D)’ and ‘(E)’ represent
the nodes ‘D’ and ‘E’, as shown in Fig. 3.

3.2. Crack tip terminating at the interface

According to Cook and Erdogan (1972), if the crack tip terminates at the interface (Fig. 1(b)), the stress
just ahead the crack tip is
U(hf)s
(=)
where /¢ denotes the thickness of the film, b represents dimensionless constant, and s is the stress singularity
exponent, which satisfies

0.(0,y) =b

(10)

x—p 2, x—f
COS(STC)—Q,W(l—S) +1_ﬂ2_07 (11)
where o and f§ are called Dundurs’ constants, which are
a:Ejl_l?Z :,ul(l—2v2)—,u2(1—2v1)
E\+E)’ 2 (1 =v2) + 25 (1 = wy)

for the plane strain problem. In the above equation, £, = E,;/(1 —v?), i =1, and 2 is called material plane

strain modulus. The quantities 1, i = 1, and 2 represent the shear moduli of material i. Because the power
of stress singularity at the crack tip is no longer one-half, the SIF for mode-I crack is defined by

Ki = }llr})l[( —21y)*6,,.(0,)]. (12)
crack tip
\’E\P\\'A B ¢
g Fy | 4

lz*i’,ﬂll

Fig. 3. The quarter-point element near the crack tip.
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3.3. Interface crack

Consider a situation in which the crack propagates through the full film and then bifurcates onto the
interface of the film and substrate, as shown in Fig. 1(c). The stress and displacement behaviors are the
same as those of the interface crack. Hutchinson et al. (1987) observed the asymptotic displacement field
near the crack tips of an interface crack. It can be expressed as

(Cl + Cz)Kr(l/z)Jris

(1 + 2ie)2v/2mcosh (ne)’ (13)

(wy +iuy), — (uy +1uy) =

where the constants ¢; = (k1 4+ 1)/u;, and ¢; = (k2 + 1)/uy; K denotes the complex intensity factor ex-
pressed by K| + iK; introduced by Sih and Rice (1964); the quantity ¢ representing the material character is
in the form of

s L ln(’ﬂ/ulﬂ/lb), (14)
2n K2/t + 1/

In Eq. (14), subscripts 1 and 2 refer to the materials in y > 0 and y < 0, respectively; the quantity x = 3 — 4v
for plane strain and (3 —4v)/(1 + v) for plane stress.

Taking the real and imaginary parts on both sides of Eq. (13) allows us to set up two simultaneous
equations. Then, by solving the simultaneous equations, the real and imaginary parts of the complex-valued
SIF, K; and K, are as follows:

D . _ D, _
K :Q\/;(uy —uy> —W(Lﬁ—u ),

:;7]? QDﬁ(“;_”;)’

where QO = (c; + ¢;)/2V2n cosh(ne), D; = cos(elnr) +2esin(elnr), D, = cos(elnr) — 2esin(elnr),
uy = uy(n), u; = u,(—n), u =u,(n),and u; = u,(—mn). The terms of cos(¢Inr) and sin (e In r) appearing in

(15)

K (zfr — u;) +

Eq. (15), cause a difficulty in numerical calculation when r approaches zero. Therefore, the overall SIF (Tan

and Gao, 1990), K, representing the maximum amplitudes of these singular stresses, or representing the
magnitude of the complex SIF is defined as

Ko = K| = \/K? + K2 (16)

Substituting Eq. (15) into Eq. (16) yields the following expression for the overall SIF:

ViTaz
NG

Eq. (17) indicates that the overall SIF K, has square root singularity at the tips of the interface crack.

To calculate the square root singularity, the quarter-point element is applied. According to Blandford
(1981), displacements at any point inside the quarter-point element with a distance r from the crack tip can
be written as

() — 4D @ /r OFes
alr) =+ 42\ [ 40 (), (18)

where [ denotes the length of the quarter-point element; A" =u"”, 4% = (=3u" +44¥ —u)),

1

AY = (Zu,m — 4u,(-2) + 2u53)) and ugk) is the displacement vector of the kth node of the quarter-point element.

1

1/2

Ky = [(u;r — u;)2 + (u) — u;)2 ) (17)
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Substituting Eq. (18) into Eq. (17) yields the expression of the overall SIF in terms of the nodal dis-
placements of the quarter-point elements. Restated,

V1T 4e 2 212
W{ (4 =) 4+ @ = )]+ (4 = )+ ()~ )] } 7 (19)

y
where superscripts (D), (E), (F), and (G) denote the nodal numbers of the quarter-point elements on the
surface of the interface crack, as shown in Fig. 3.

Ky =

4. Numerical evaluation

For the cracked film—substrate system, the material properties of the film and substrate are both assumed
to be linear isotropic and homogeneous. Let Young’s modulus and Poisson ratio be denoted as £y, v for
the film and E,, v, for the substrate. Also assumed herein, the cracked film—substrate structure is subjected
to a uniform load in the x -direction on the crack surface. Owing to the symmetry with respect to y -axis,
only the half space x > 0 is considered.

4.1. Crack tip in the film

First, consider a crack starting from the edge of the film and extending along the direction perpendicular
to the interface as shown in Fig. 1(a). The SIF can be evaluated by Eq. (9).

4.1.1. Effects of Dundurs’ parameters and crack length on the SIF

To understand how the crack length and Dundurs’ parameters influence the SIF, the value of the di-
mensionless crack length ar/k; is taken from zero to one and Dundurs’ parameters are chosen as f = 0 and
o=10.99, 0.8, 0, and — 0.8. Fig. 4 summarizes those results, which correlate very well with those of Beuth
(1992) and reveals the following: (i) If the film is stiffer than the substrate (i.e., « > 0), the SIF increases with
an increasing crack length. More specifically, as the crack tip is near the interface (a¢/hs — 1), SIF rapidly

7.0
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N 6.0 —
= - hy
© 50
X E
= 4O =00
%) E hy/hi—o0 ,
7] -
° 3.0 - 0=08
S E BEM
@ =
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0
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Fig. 4. The effects of the crack length and Dundurs’ parameters on SIF of the problem in Fig. 1(a).
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increases, which is quite obvious for the case a = 0.99; (ii) when the film and substrate have the same elastic
properties (i.e., o =0), the normalized SIF K;/c+/mh; ~ 1 for ag/h; — 1. This phenomenon is attributed to
the crack embedded in one material; (iii) For o < 0 (the substrate is stiffer than the film), the value of
Ki/o+/mhs is about 0.8 for ag/h; = 0.2 ~ 0.9, whereas K;/a\/nh; decreases as the crack tip is nearly ter-
minated at the interface (i.e., ar/hy — 1). This observation suggests that if the substrate is stiffer than the
film, it is not easy for the cracking to further propagate into the substrate.

4.1.2. Effects of the thickness ratio of the substrate and film on the SIF

Fig. 5 is plotted according to the thickness ratios of the substrate and the film (4s/A¢) equal to 1, 3, and 10
and the material properties of the film and substrate taken as u; = 3p,, vi = v, = 0.3. This figure indicates
that the thicker the substrate implies a lower amount of SIF. However, the SIF varies only slightly when the

ratio hg/hs increases from 3 to 10. This finding suggests that if the ratio As/A; is more than 10, the value of
SIF is nearly the same as that of &;/hs = 10.

4.2. Crack tip terminating at the interface

Interestingly, the crack tip is located on the interface of the film and the substrate, as illustrated in Fig.
1(b). As for this problem, the stress behavior at the crack tip has been mentioned in Section 3.2. The SIF
can be evaluated by Eq. (12).

4.2.1. Effects of Dundurs’ parameters o, and f on the SIF

To understand the effects of Dundurs’ parameters on SIF, take § = 0 and f§ = o/4, while o is changed
form —1 to 1. Fig. 6 plots the relation of the dimensionless SIF, K;/a(nh)’, and Dundurs’ parameter o. This
figure reveals the following: (i) the value of K;/a(mh;)" decreases with an increase of the parameter o from
—1to 1 for f =0 as well as § = a/4. This occurrence is attributed to that when o increases, o does as well,
subsequently, decreasing the dimensionless SIF; (ii) For a < 0, the value of Ki/a(nhs)" for f = o/4 is less
than that for § = 0; while for o > 0, the value of K;/a(nh)* for f = a/4 is larger than that for f = 0.

6.0
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.\-’:\_ 50__ If
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~ 40+
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Dimensionless Crack Length (a; /h;)

Fig. 5. The effect of the thickness ratio on SIF of the problem in Fig. 1(a).
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Fig. 6. Dundurs’ parameters o versus SIF of the problem in Fig. 1(b) for f =0 and f§ = a/4.

The results in Fig. 6 slightly differ from those of Beuth (1992). However, when « = f§ = 0, in the absence
of elastic mismatch, the value of Kj/o(nhs)’ should be equal to 1. According to our results, the value of

Ki/a(nhe)® for o= =0 is 0.95, in which the error is 5%; but in Beuth’s result, the value of Ki/a(nh)" is
1.11, in which the error is 11%.

4.2.2. Effects of the thickness ratio hs/h; on the SIF

Consider the thickness ratios (4s/hr), which are chosen as 1, 2, 3, 4, 6, and 20. Figs. 7 and 8 summarize
the results for f =0 and 8 = a/4, respectively. According to these figures, Ki/a(mh;)* decreases with in-
creasing hy/he. In addition, the difference of Ki/o(mh)® between hg/he=1 and hy/h;=2 is significantly
higher than that of K;/a(nh¢)" between different thickness ratios. Moreover, if the thickness ratio hs/hs =1,
the dimensionless SIF, K;/a(nh¢)’, has a maximum value at o = —0.6 for =0 and at o = —0.8 for

p=a/4.
4.3. Interface crack

When the crack penetrates the film and then propagates along the interface of the film and substrate, as
shown in Fig. 1(c), the stress behavior near the crack tip of this problem is the same as that of the interface
crack. For the plane strain problem, the ERR for the interface crack problem of Fig. 1(c) denoted as G; can
be calculated by the equation as follows (Suga et al., 1988):

Gi:|:1—V1+1—V2:| KK (20)

K ty |4 cosh®(me)’

where K denotes the complex-valued SIF and K represents the conjugate of K. The quantity (KK )l/ ? is the
overall SIF, K, named by Tan and Gao (1990) and can be evaluated using Eq. (19). Therefore, as long as
the overall SIF K, is obtained, the ERR G; of the interface crack can calculated by Eq. (20).
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Fig. 7. The effect of the thickness ratio on SIF of the problem in Fig. 1(b) for f = 0.
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Fig. 8. The effect of the thickness ratio on SIF of the problem in Fig. 1(b) for f = «/4.

4.3.1. Effects of Dundurs’ parameters and the crack length on G

For this interface crack problem, examining the variations of the normalized ERR for various combi-
nations of Dundurs’ parameters is a worthwhile task. The following data are used: f = «/4, o« = 0.6, 0.2, 0,
—0.6, and —0.9; the thickness ratio A,/A¢ is fixed to 20; the ratio of crack length and the film thickness
a;/hy = 0" ~ 3.0. Fig. 9 depicts the variations of normalized ERR, G;E;/(c%h¢), versus a;/h; according to
different parameter o, where £; = E; /(1 — v}). It can be seen from Fig. 9 that when the dimensionless crack
length a;/h; < 1, the ERR decreases as o > 0; meanwhile, the ERR slowly increases as o < 0. Moreover,
when a;/h; > 1, the ERR with the thickness ratio %;/h; = 20 approaches a constant value for all o. This
finding implies that the ERR is in steady state if the crack tip is of a distance of 4; apart from where the load
is applied and if the thickness ratio is sufficiently high. Notably, results in this figure slightly differ from
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Fig. 9. The effects of the crack length and the parameter « on ERR of the problem in Fig. 1(c) for f = «/4.

those of Ye et al. (1992). The discrepancies might be because of the inherent inaccuracies induced by the
discreteness of the BEM. It is also quite possible that the SIF calculation technique for interface cracks
shown in Eq. (19) gives different results from those calculated by the finite element method based on the
J-integral.

4.3.2. Effects of the thickness ratio hs/h,

The data in Fig. 9 are based on A/h; =20. This section addresses the effect of the substrate thickness on
the ERR. For « =0.2 and f§ = «/4, Fig. 10 shows the graph of the ERR versus the dimensionless crack
length with the variations of is/hs =1, 2, 3, 5, 10, and 20. According to this figure, the thicker the substrate
the lower is the ERR value. This figure also reveals that if the substrate thickness is not sufficiently high, e.g.
hs/hy =1, the ERR has unstable behavior. To investigate this unstable behavior of ERR, let the thickness
ratio hy/hs be fixed as 1 and Dundurs’ parameter o be taken as 0.8, 0.6, 0.2, 0.0, —0.2, 0.6, and —0.8. Fig. 11
summarizes the effects of « on ERR of the interface problem for A;/h; =1. According to this figure, al-
though the unstable behavior of the ERR in the problem Fig. 1(c) increases with increasing «, the ERR is
stable for a negative a.

4.4. Crack tip located inside the substrate

In this section, we consider the crack propagating into the substrate, as shown in Fig. 1(d). To analyze
the problem, the quarter-point element is initially used to calculate the SIF of mode-I crack by using Eq. (9).
Then, the ERR G, of the plane strain problem can be evaluated by

1 —v3
Ey

G, = K2, (21)

Subscript ‘s’ in G; indicates the ERR for the problem in which the crack tip is located inside the sub-
strate.
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Fig. 10. The effect of the thickness ratio on ERR of the problem in Fig. 1(c) for « = 0.2 and f = o/4.
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Fig. 11. The effect of the parameter « on ERR of the problem in Fig. 1(c) for hs/hs = 1.

4.4.1. Effects of crack length and Dundurs’ parameters

To study the effects of the crack length and Dundurs’ parameters, the dimensionless crack length a /Ay is
taken from 1" to 3.6 and the parameters o =0.5, 0.3, 0, —0.3, and —0.5, § = o/4 are chosen. The thickness
ratio with the thickness ratio A/ A is fixed to 20. Fig. 12 illustrates the variation of the dimensionless ERR,
G,E;/(d’he), with dimensionless crack length a,/h;. According to this figure, the value of G, increases with
increasing o. Moreover, ERR G; rapidly decreases when the crack tip is near the interface; it also slowly
decreases when the crack experiences further growth. However, our results are slightly greater than those of
Ye et al. (1992), specially when a,/h; > 3, the discrepancies are increase. This difference might be attributed
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Fig. 12. The effect of the crack length on ERR of the problem in Fig. 1(d) for As/h; = 20.

to the effect of the boundary of the substrate on ERR, or the different SIF calculation techniques of in-
terface cracks, as stated in Section 4.3.1.

4.4.2. Effects of the thickness of the substrate

The same problem in Fig. 1(d) is considered herein. However, the thickness ratios (As/k¢) equal to 4, 6,
10, and 20 (for fixed Ar) are used. Dundurs’ parameters are taken as « = 0.5 and ff = «/4. Fig. 13 indicates
that if the substrate thickness is sufficiently high, e.g. 4;/hr =20, ERR is nearly constant for the dimen-
sionless crack length a,/hr equal to 1.5 ~ 4.6. However, when the substrate thickness decreases, i.e., the
value of hg/hs decreases, and the effects of the boundary of the substrate become obvious. The phenomena
associated with the boundary effects can be clearly observed when &g/h = 4.
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Fig. 13. The effect of the thickness ratio on ERR of the problem in Fig. 1(d) for a = 0.5.
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5. Conclusions

This study applies the multi-region BEM to analyze the cracked film—substrate material. Based on the
results presented herein, we can conclude the following:

(1) The effects of material mismatch: If the film is stiffer than the substrate (o > 0), the SIF or ERR
increases with increasing o; while if the film is weaker than the substrate (o« < 0), the SIF or the ERR does
not markedly change. Moreover, for the problem of Fig. 1(a), when the crack tip approaches the interface
(ag/hy — 17), the SIF or ERR tends to infinity for « > 0 but approaches zero for o < 0. This observation
suggests that the stiffer substrate can protect the crack propagating further, as confirmed by Beuth (1992)
and Ye et al. (1992). However, for the problem of the crack tip inside the substrate (Fig. 1(d)), the ERR
increases rapidly for all « when the crack tip approaches the interface (as/hr — 17);

(2) The effects of the crack length: When the crack starts from the edge of the film and propagates
normally towards the interface, the SIF increases stably for a;/h; = 0.2 ~ 0.5. However, SIF rapidly in-
creases for o > 0 or decreases for o > 0, when the crack is normal and terminated to the interface, as
mentioned by Ye et al. (1992). If the crack further extends along the interface, the ERR decreases (for
o > 0) or increases (for o < 0) to a steady-state value. Charalambides et al. (1989) mentioned that the ERR
of the interface crack is in steady-state condition if the interface crack length significantly exceeds the film
thickness. However, this steady-state behavior is true not only for interface crack length significantly ex-
ceeding the film thickness, but also in the condition of a high thickness ratio hs/h¢; and

(3) The effects of the thickness ratio: While the film thickness is fixed and the substrate thickness is
changed, the SIF or ERR increases with a decreasing As/A;. Moreover, for the problems of Fig. 1(a) and (b),
the variation of the thickness ratio, //h¢, only negligibly influences SIF. However, for the problem Fig.
1(c), if the thickness ratio is small (e.g. As/hs = 1), the interface crack becomes quite unstable for a high
value of o. In addition, when the crack propagates into the substrate (Fig. 1(d)), the boundary of the
substrate greatly influences the ERR.
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